
Prediction of count data with spatial dependency and
zero-inflation

A hierarchical bayesian approach

O. Flores & F. Mortier

Cirad

January 31, 2007

O. Flores & F. Mortier (Cirad) Baysian models for spatial counts January 31, 2007 1 / 28



Contents

1 Context
2 Classical and zero-inflated models for count data
3 Taking spatial dependency into account
4 Posterior analysis
5 Application

O. Flores & F. Mortier (Cirad) Baysian models for spatial counts January 31, 2007 2 / 28



Context

Context

When count data are sampled in the field
(number of trees, flowers, seeds, tornadoes, accidents,. . . ),

1 spatial autocorrelation (biology is contagious. . . !),
2 zero-inflation (low abondance, clumped pattern, sampling design)

. . . are likely ! !⊕
multiple descriptors of the environment

Modelling issues
1 how to model taking those features into account ?
2 how to select relevant explicative variables and fit the models ?
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Context Classical models

Classical models for count data

Poisson model

Example :
beans dropped over a chess game and counted
within the cells → Z ∼ P (λ)

P(Z = z |λ) =
λz

z!
e−λ

E(Z ) = λ and V(Z ) = λ

Negative Binomial Model
Continuous mixture of Poisson distributions with Gamma-distributed
intensity → Z ∼ NB (λ, τ)

P(Z = z|λ, τ) =
Γ (z + τ)

z!Γ(τ)

(
τ

λ + τ

)τ (
λ

λ + τ

)z
, (λ, τ) > 0

E(Z ) = λ and V(Z ) = λ +
λ
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Context Zero-inflated models

Models for count data with zero-inflation I

Zero Inflated Poisson (ZIP) models

Two processes acting simultaneously :
- Is the distribution a Poisson or certainly nul ?
- If Poisson, how many ?
ZIP as a Mixture Poisson model :

Z ∼ ωδ(0) + (1− ω)P(λ)

P(Z = z |ω, θ) =

{
ω + (1− ω)P(Z = 0|θ), if z = 0

(1− ω)P(Z 6= 0|θ), if z > 0

E(Z ) = (1− ω)λ and V(Z ) =

(
1 +

λ

ω

)
λ
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Context Zero-inflated models

Models for count data with zero-inflation II

ZI models as missing data models

Let C = (C1, . . . , Cn) be a latent random variable so that Ci equals
- ci = 1 if Zi = 0 and drawn from (0)
- ci = 0 if Zi > 0 or if Zi is null and drawn from P(λ)

Marginal distribution : C ∼ Bernoulli(ω)

The new joint distribution is

f (Z , C |ω, λ) =
n∏

i=1

f (zi |Ci = ci , ω, λ)π(Ci |ω)

=
n∏

i=1

pci [(1− ω) P(Zi = zi |λ)]1−ci
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Explicative variables

Taking explicative variables into account

Mixture proportion (ω) and Poisson intensity (λ)
dependent on co-variables (B,X) :

The mixture proportion is expressed as a function of B :

logit(ωi ) = Biβ

The Poisson intensity depends on the environment via X :

log(λi ) = Xiγ + αi

- α : spatial random effect allowing for
autocorrelation between observations,

- B and X may have columns in common or not
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Random spatial effect

Random spatial effect

Conditional auto-regressive process (CAR) on discret domaine (lattice)

αi |αj , j ∈ Vi ∼ N

∑
j∈Vi

ρMijαj , σ
2


Vi neighborhood of individual i

E (α) = 0

σ2 : conditional variance

ρ : spatial correlation

M = (Mij) : known weights

θ = (ρ, σ2)
Hyper-prior : ρ ∼ U]a, b[, σ2 ∼ IG

Centre de la placette
s
k

Voisinage
v
k
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Variable selection in fixed effects

Variable selection

Let a unknown latent binary variable (to be estimated) indicate
which explicative variables are included in the model :

η = {ηj}p1

where p is the total number of explicative variables.
The linear predictors are modified

ξi =

p∑
j=1

Yijδjηj , i = 1, . . . , n,

with ξ = (logit(ω), log(λ)), Y = (B,X), δ = (β, γ)
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Bayesian conditional hierarchy

Hierarchical Bayesian models I

Three basic levels of hypotheses
1 Data level : conditional distribution of data

Zi |θ1, ξ ∼ F(θ1, ξi )

and (Zi |θ1, ξi )⊥(Zj |θ1, ξj)

2 Process Level : distributions of parameters controling data level

ξ|θ2 ∼ Υ(θ2)

3 Parameter level : prior distributions of unknown parameters

Θ = (θ1, θ2) ∼ Φ(θ3)

with θ3 set a priori
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Bayesian conditional hierarchy

Hierarchical Bayesian models II

x

Cyclic graph for spatial ZIP with variable selection : stochastic nodes
(circles) or deterministic (squares)
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Bayesian conditional hierarchy

Hierarchical Bayesian models III
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Estimation of posterior distributions

Estimation : Bayesian principle

Aim : estimate (posterior) distribution of Θ given data z

Given prior distribution on Θ : π0,
Posterior distribution (Bayes’ theorem) :

π(Θ|z) =
f (z |Θ)π0(Θ)∫
f (z |Θ)π0(Θ)dΘ

In general, we do not know how to calculate π(Θ|z)

Method : Approximate π(Θ|z) using a Monte Carlo Markov Chain
algorithm
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The ZIP case

The ZIP case
Simulate the posterior distribution

In the spatial ZIP case with variable selection :

Θ = (η, β, γ, c, α, ρ, σ)

The posterior distribution is :

π(η, c, γ, β, α, ρ, σ|z) = f (z|η, β, γ, c, α)π(c|γ)π(α|ρ, σ2)

π(β|η)π(γ)π(ρ)π(σ2)π(η),

where f (z|η, β, γ, c, α) = `(η, β, γ, c, α|z) is the likelihood of the
parameter set given data.
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Monte Carlo Markov Chain

Monte Carlo Markov Chain Algorithm

Aim : sample values of Θ = (Θ1, . . . ,ΘN) from an unknown distribution π

Construct a markov chain whose asymptotic distribution is π

When distribution π is obtained (convergence), extract samples
Θ(k) = (Θ

(k)
1 , . . . ,Θ

(k)
N ) to estimate posterior mode, median, mean. . .
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Algorithms : principle

MCMC algorithm principle

One of mutation/selection algorithms in two steps :

1 Propose a new value for parameters (mutation) : Θ −→ Θ∗

2 Accept or reject mutation (selection)

Different types of algorithm :

- Mutation rule ?  
flexible : independent, random walk,
gradient-orientated. . .

- Selection rule ?  imposed by theory (Metropolis-Hastings, 1970 )
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The Metropolis-Hasting algorithm

Metropolis-Hasting algorithm

Require: Θ0, initial point
for i = 0 to Niter do

Let Θ? ∼ Q(Θ|Θi ), with Q the proposal distribution (mutation)
Accept

Θi+1 =

{
Θ? with probability r(Θi ,Θ?)
Θi with probability 1− r(Θi ,Θ?)

where

r(Θi ,Θ?) = min(r?, 1) = min
{

π(Θ?)

π(Θi )

Q(Θi |Θ?)

Q(Θ?|Θi )
, 1

}
end for
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Gibbs sampling

Gibbs sampling algorithm

Principle : parameters sequentially updated knowing
the full conditional distributions πi (Θi |Θ−i )

Θ = Θ1, . . . ,Θn with known conditional distributions π1, . . . , πn.

In the mutation step, one can simulate
1 Θi+1

1 ∼ π1(Θ
i
1|Θi

2, . . . ,Θ
i
n)

2 Θi+1
2 ∼ π2(Θ

i
2|Θ

i+1
1 ,Θi

3, . . . ,Θ
i
n)

3 . . .
4 Θi+1

n ∼ πn(Θ
i
n|Θi+1

1 , . . . ,Θi+1
n−1)

In this case, one can verify r? = 1 ⇒ proposals are optimal (following MH criterion),
⇒ all proposals are accepted
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Metropolis within Gibbs sampling

Metropolis within Gibbs sampling

Some of the full conditional conditions may be unknown.
In this case, implement a Metropolis step for the corresponding parameters.
Overview of the overall algorithm :

1 Initialization
Θ0 = (η0, β0, γ0, c0, α0, ρ0, σ0)

2 Sequential updates :
ηt+1 | z, βt , γt , ct , αt the latent indicator variable : ηt  ηt+1,
(βt+1, γt+1) | z, ηt+1, ct , αt the regression coefficients :
(βt , γt) (βt+1, γt+1)
ct+1 | z, ηt+1, βt+1, γt+1, αt the latent class variable : ct  ct+1
αt+1 | z, ηt+1, βt+1, γt+1, ρt , σt the spatial random effect : αt  αt+1
ρt+1 | αt+1, σt the spatial parameter mesuring dependency : ρt  ρt+1
σt+1 | αt+1, ρt+1 the conditional variance parameter : σt  σt+1
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Subalgorithms examples

Subalgorithms I
Examples

Independent Metropolis step :
η update for variable selection

Prior ηi ∼ B(0.5)
Proposal

randomly chosen i ∈ {1, . . . , nvar} ;
η?
i ∼ B(0.5) (η? = 1 or 0)

Selection

r? =
`(z |α, β, η?, γ)

`(z |α, β, γ)

is the likelihood ratio
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Subalgorithms examples

Subalgorithms II
Examples

Random Walk Metropolis step :
ρ update

Prior
π0(ρ) ∼ N (0, 1)1l[a,b]

Proposal
ρ?|ρ ∼ N (ρ, σ2

ρ)1l[a,b]

Selection

log(r∗) =
`(ρ?|α, σ2)

`(ρ|α, σ2)

N (ρ?, σ2
ρ)

N (ρ, σ2
ρ)

=
`(α|ρ?, σ2)π0(ρ

?)

`(α|ρ, σ2)π0(ρ)

N (ρ?, σ2
ρ)

N (ρ, σ2
ρ)

numerically tractable thanks to CAR properties
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Subalgorithms examples

Subalgorithms III
Examples

Langevin-Metropolis step (gradient-orientated) :
α update

Prior : CAR model

Proposal α∗|α ∼ N (µα, hI), µα = α + h
2∇(α)

∇(α) = (1− c)(z− λ)− ˚α

Selection

log(r∗) = log
[
`(α∗|z)
`(α|z)

]
π(α∗|ρ, σ)

π(α∗|ρ, σ)

N (µα, hI)
N (µ?

α, hI)
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Simulation and estimation with R No variable selection

Posterior simulation and estimation with R I
Without variable selection

Parameters
β = (−1, 0.5),
γ = (0.8, 1.2),
ρ = 0.9, σ = 1
Covariables
B ∼ N (0, 0.7I2)
X ∼ N (0, 0.7I2)
Data simulation
C ∼ B(ω = Bβ),
P ∼ P(λ = Xγ)
ZP = (1− C)P
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Simulation and estimation with R No variable selection

Posterior simulation and estimation with R II
Without variable selection

Summary of MCMC samples (no variable selection)

Iiterations: 20000, Burn-in phase: 5000, Thinning number: 100

Coefficients in Binomial distribution
Mean Sd 2.5% Median 97.5%

B1 -1.088 0.294 -1.6698 -1.090 -0.578
B2 0.546 0.238 0.0701 0.509 1.040

Coefficients in Poisson distribution
Mean Sd 2.5% Median 97.5%

X1 0.714 0.0786 0.556 0.711 0.873
X2 1.250 0.0761 1.082 1.249 1.401

Spatial parameters in CAR model
Mean Sd 2.5% Median 97.5%

rho -0.178 0.800 -1.673 -0.136 0.98
sigma 1.063 0.171 0.795 1.066 1.41
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Simulation and estimation with R No variable selection

Posterior simulation and estimation with R III
Without variable selection
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Simulation and estimation with R With variable selection

Posterior simulation and estimation with R I
With variable selection

Parameters
β = (−1, 0.5, 0, 0, 0),
γ = (0.8, 1.2, 0, 0, 0),
ρ = 0.9, σ = 1

Covariables
B′ = (B,N (0, 0.7I3))
X′ = (X, mathcalN(0, 0.7I2))
Data simulation
C ∼ B(ω = Bβ),
P ∼ P(λ = Xγ)
ZP = (1− C)P
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Simulation and estimation with R With variable selection

Posterior simulation and estimation with R II
With variable selection

Summary of MCMC samples for parameter η in variable selection

Variable selection in Binomial distribution
Mean Sd 2.5% Median 97.5%

B1 0.947 0.225 0 1 1
B2 0.680 0.468 0 1 1
B3 0.533 0.501 0 1 1
B4 0.573 0.496 0 1 1
B5 0.467 0.501 0 0 1

Variable selection in Poisson distribution
Mean Sd 2.5% Median 97.5%

X1 1.000 0.000 1 1 1
X2 1.000 0.000 1 1 1
X3 0.313 0.465 0 0 1
X4 0.640 0.482 0 1 1
X5 0.400 0.492 0 0 1
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Conclusions

Conclusions

Hierarchical Bayseian : flexible framework for modelling,
Mutation/selection algorithms are robust and tunable,
Computing realized in C language can be easily interfaced with R,
All routines and more will be included in a free R package
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