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@ Context

@ Classical and zero-inflated models for count data
© Taking spatial dependency into account

@ Posterior analysis

© Application
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Context
Context

When count data are sampled in the field
(number of trees, flowers, seeds, tornadoes, accidents,...),

@ spatial autocorrelation (biology is contagious. .. !),
@ zero-inflation (low abondance, clumped pattern, sampling design)
...are likely !'!

@ multiple descriptors of the environment

Modelling issues
@ how to model taking those features into account?

@ how to select relevant explicative variables and fit the models ?
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Context Classical models

Classical models for count data

@ Poisson model

Example :
beans dropped over a chess game and co
within the cells — Z ~ P (\)

)\Z
P(Z=2z]\) = ;e*A

E(Z)=X and V(Z)=A\

e Negative Binomial Model
Continuous mixture of Poisson distributions with Gamma-distributed
intensity — Z ~ NB (A, 7)

e - () (1) o
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Context Zero-inflated models

Models for count data with zero-inflation |

Zero Inflated Poisson (ZIP) models

Two processes acting simultaneously :
- Is the distribution a Poisson or certainly nul?
- If Poisson, how many?

ZIP as a Mixture Poisson model :

Z ~wi(0)+ (1 —w)P(N)

P(Z = zlw,0) = {Wzr(l—W)P(ZZOIH), if z=0

1-w)P(Z #£00), ifz>0

E(Z)=(1-w)A and V(Z)= <1 + 2) A
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Context Zero-inflated models

Models for count data with zero-inflation |l

Z| models as missing data models

Let C =(GC,..., C,) be a latent random variable so that C; equals
- ¢i=1if Z; =0 and drawn from (0)
-¢i=0if Z; > 0 or if Z; is null and drawn from P()\)

Marginal distribution : C ~ Bernoulli(w)

The new joint distribution is

f(Z,Clw, ) = [[f@IG=ciw  )n(Clw)

i=1

= [IP10 - w)B(Zi = z2)]
i=1
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Explicative variables

Taking explicative variables into account

Mixture proportion (w) and Poisson intensity (\)
dependent on co-variables (B, X) :

@ The mixture proportion is expressed as a function of B :
logit(w;) = B;f
@ The Poisson intensity depends on the environment via X :
log(Ai) = Xiy + o

- « : spatial random effect allowing for
autocorrelation between observations,

- B and X may have columns in common or not
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Random spatial effect
Random spatial effect

Conditional auto-regressive process (CAR) on discret domaine (lattice)

a,-|aj,j eV~ N Z pM,jaj,U2

@ E(a)=0
@ &2 : conditional variance

@ p : spatial correlation

Jjev;

V; neighborhood of individual i

L1

@ M = (Mj) : known weights Voisvizage/

0= (p7 02)

Hyper-prior : p ~ Ula, b[, 02 ~ IG

Centre de la placette
Sk
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Variable selection in fixed effects
Variable selection

Let a unknown latent binary variable (to be estimated) indicate
which explicative variables are included in the model :

n={n}{

where p is the total number of explicative variables.
The linear predictors are modified

P
&=> Yiom, i=1,...n,
j=1

with £ = (logit(w),log(A)), Y = (B, X),d = (5,7)
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Bayesian conditional hierarchy
Hierarchical Bayesian models |

Three basic levels of hypotheses
@ Data level : conditional distribution of data

Zi|01,& ~ F(61, &)
and (Z;|61, &) L(Z;101,¢))
@ Process Level : distributions of parameters controling data level
€02 ~ T(62)
© Parameter level : prior distributions of unknown parameters
© = (61,602) ~ ®(63)

with 03 set a priori
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Bayesian conditional hierarchy
Hierarchical Bayesian models Il

Cyclic graph for spatial ZIP with variable selection : stochastic nodes
(circles) or deterministic (squares)
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Bayesian conditional hierarchy

Hierarchical Bayesian models |

Data Z

Process

Parameter

Hyperparameter
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Estimation of posterior distributions

Estimation : Bayesian principle

Aim : estimate (posterior) distribution of © given data z

@ Given prior distribution on © : 7,
@ Posterior distribution (Bayes' theorem) :

_ f(z|©)m(©)
m(©lz) = ff(z|@)7roo(@)d@

@ In general, we do not know how to calculate 7(©|z)

Method : Approximate 7(©|z) using a Monte Carlo Markov Chain
algorithm

January 31, 2007
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The ZIP case

The ZIP case

Simulate the posterior distribution

In the spatial ZIP case with variable selection :
©=(n08,7¢c0anp0)
The posterior distribution is :
m(n,¢,7, B, p,002) = f(zln, 5,7, ¢, a)r(cly)m(alp, o?)
w(BIn)r(V)w(p)r(o)m(n),

where f(z|n, 5,7, c,a) = €(n, 8,7, c, a|z) is the likelihood of the
parameter set given data.
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Monte Carlo Markov Chain
Monte Carlo Markov Chain Algorithm

Aim : sample values of © = (©1,...,0Oy) from an unknown distribution 7

@ Construct a markov chain whose asymptotic distribution is 7
@ When distribution 7 is obtained (convergence), extract samples
ok = (@:(Lk), cee @%()) to estimate posterior mode, median, mean. ..
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MCMC algorithm principle

One of mutation/selection algorithms in two steps :

© Propose a new value for parameters (mutation) : © — ©*

@ Accept or reject mutation (selection)

Different types of algorithm :

flexible : independent, random walk,
gradient-orientated. . .

- Selection rule? ~»  imposed by theory (Metropolis-Hastings, 1970 )

- Mutation rule? ~
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The Metropolis-Hasting algorithm
Metropolis-Hasting algorithm

Require: @0, initial point
for i =0 to N do
Let ©* ~ Q(©|©"), with @ the proposal distribution (mutation)
Accept

ot _ ©*  with probability r(©', ©*)
| © with probability 1 — r(©",©%)

where

r(©',©*) = min(r*,1) = min {

(") Q(e']e%) 1}
(&) Q(er|e7)’

end for
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Gibbs sampling algorithm

Principle : parameters sequentially updated knowing
the full conditional distributions 7;(©;|©_;)

© = 04,...,0, with known conditional distributions 71, ..., 7.

In the mutation step, one can simulate
Q O/ ~ m1(0]]6},...,01)
Q o)t ~ m(0heitt el ... el
o ...
Q O ~ m(O}01™, ..., 0)
In this case, one can verify r* =1 = proposals are optimal (following MH
= all proposals are accepted
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Metropolis within Gibbs sampling

Metropolis within Gibbs sampling

Some of the full conditional conditions may be unknown.
In this case, implement a Metropolis step for the corresponding parameters.
Overview of the overall algorithm :

@ Initialization
@0 = (7707 50a 70, Co, &0, PO, 00)
@ Sequential updates :

® N1 | Z, Br, Ve, Ct, @ the latent indicator variable : 7y ~ ¢41,

o (Bri1,Ve+1) | Z,Met1, €, i the regression coefficients :

(ﬁtv’yt) ~ (5t+1,’7t+1)

Cet1 | Z,Met1, Bry1, Ver1, @ the latent class variable : ¢ ~> €441

Qey1 | Z,Me41, Beg1s Ver1, Pe, 0 the spatial random effect : a; ~ apqn
Pt+1 | @ri1, 0 the spatial parameter mesuring dependency @ p;r ~ pri1
Ot41 | Qeq1, pry1 the conditional variance parameter : o ~ 0441
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Subalgorithms examples

Subalgorithms |

Examples

Independent Metropolis step :
n update for variable selection

e Prior n; ~ B(0.5)

@ Proposal
e randomly chosen i € {1,...,n,.};
o 17 ~ B(0.5) (n* =1o0r0)

@ Selection

* — g(z|a7 ﬂ? 77*’ ’Y)
U(z|e, 3,7)
is the likelihood ratio
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Subalgorithms examples

Subalgorithms [l

Examples

Random Walk Metropolis step :

p update
@ Prior
mo(p) ~ N(0, 1)1, 4
@ Proposal
Mo ~ N(p,02) U b
@ Selection

o Uptla,d?) N(p*,o7)
log(r*) = p|a, 0?) N(Paggp)
U(alp*, o?)mo(p*) j\/’(p*,ag
alp. Do) X779

numerically tractable thanks to CAR properties
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Subalgorithms examples

Subalgorithms [l

Examples

Langevin-Metropolis step (gradient-orientated) :
a update

@ Prior : CAR model
o Proposal a*|a ~ N (pta, hl), pta = o + 2V(a)
Vie)=(1-c)(z—N) - "«

o Selection

0 [He k)] (0. 0) M A
o(r") = log [Mz)] (o, ) N (g Fl)
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Simulation and estimation with R No variable selection

Posterior simulation and estimation with R |

Without variable selection

Histogram of alpha Histogram of ZP

Parameters

8 =(-1,0.5),
v =(0.8,1.2),
p=09 0=1
Covariables

B ~ N(0,0.712)
X ~ N(0,0.71,)
Data simulation
C ~ B(w=Bp),
P~ P(A=Xy)
ZP=(1-C)P

Frequency
Frequency
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Simulation and estimation with R No variable selection

Posterior simulation and estimation with R 1l

Without variable selection

Summary of MCMC samples (no variable selection)

Iiterations: 20000, Burn-in phase: 5000, Thinning number: 100

Coefficients in Binomial distribution
Mean Sd 2.5% Median 97.5%

Bl -1.088 0.294 -1.6698 -1.090 -0.578

B2 0.546 0.238 0.0701 0.509 1.040

Coefficients in Poisson distribution
Mean Sd 2.5% Median 97.5%

X1 0.714 0.0786 0.556 0.711 0.873

X2 1.250 0.0761 1.082 1.249 1.401

Spatial parameters in CAR model

Mean sd 2.5% Median 97.5%
rho -0.178 0.800 -1.673 -0.136 0.98
sigma 1.063 0.171 0.795 1.066 1.41
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Simulation and estimation with R No variable selection

Posterior simulation and estimation with R Il|

Without variable selection
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Simulation and estimation with R With variable selection

Posterior simulation and estimation with R |

With variable selection

Parameters

8 =(-1,05,0,0,0),
~=(0.8,1.2,0,0,0),
p=09 0=1

Covariables

B’ = (B, N(0,0.713))

X" = (X, mathcalN(0,0.713))

Data simulation

C ~ B(w = Bf),
P~ P(\=Xn)
ZP =(1-C)P
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Simulation and estimation with R With variable selection

Posterior simulation and estimation with R 1l

With variable selection

Summary of MCMC samples for parameter 7 in variable selection

Variable selection in Binomial distribution
Mean Sd 2.5% Median 97.5%

Bl 0.947 0.225 0 1 1

B2 0.680 0.468

B3 0.533 0.501

B4 0.573 0.496

B5 0.467 0.501

T

1
1
1
0

o O O o

Variable selection in Poisson distribution
Mean Sd 2.5% Median 97.5%

X1 1.000 0.000 1 1 1

X2 1.000 0.000

X3 0.313 0.465

X4 0.640 0.482

1
0
1
X5 0.400 0.492 0

O O O
[ S
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Conclusions

Conclusions

@ Hierarchical Bayseian : flexible framework for modelling,
e Mutation/selection algorithms are robust and tunable,
e Computing realized in C language can be easily interfaced with R,

@ All routines and more will be included in a free R package
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