Prediction of count data with spatial dependency and zero-inflation

A hierarchical bayesian approach

O. Flores & F. Mortier

Cirad

January 31, 2007

Contents

- Context
- Classical and zero-inflated models for count data
- Taking spatial dependency into account
- Operation Posterior analysis
- 6 Application

Context

When **count data** are sampled in the field (number of trees, flowers, seeds, tornadoes, accidents,...),

- spatial autocorrelation (biology is contagious. . . !),
- 2 zero-inflation (low abondance, clumped pattern, sampling design)
 - ...are likely!!
- multiple descriptors of the environment

Modelling issues

- how to model taking those features into account?
- 2 how to select relevant explicative variables and fit the models?

Classical models for count data

Poisson model

Example:

beans dropped over a chess game and co within the cells \rightarrow $Z \sim \mathcal{P}(\lambda)$

$$\mathbb{P}(Z = z | \lambda) = \frac{\lambda^{z}}{z!} e^{-\lambda}$$

 $\mathbb{E}(Z) = \lambda \text{ and } \mathbb{V}(Z) = \lambda$

Negative Binomial Model

Continuous mixture of Poisson distributions with Gamma-distributed intensity $\to Z \sim \mathcal{NB}(\lambda, \tau)$

$$\mathbb{P}(Z = \mathbf{z} | \lambda, \tau) = \frac{\Gamma(\mathbf{z} + \tau)}{\mathbf{z}! \Gamma(\tau)} \left(\frac{\tau}{\lambda + \tau}\right)^{\tau} \left(\frac{\lambda}{\lambda + \tau}\right)^{\mathbf{z}}, \ (\lambda, \tau) > 0$$

 $\mathbb{F}(Z) - \lambda$ and $\mathbb{V}(Z) - \lambda + \frac{\lambda}{2}$

Models for count data with zero-inflation I

Zero Inflated Poisson (ZIP) models

Two processes acting simultaneously:

- Is the distribution a \mathcal{P} oisson or certainly nul?
- If Poisson, how many?

ZIP as a Mixture Poisson model:

$$Z \sim \omega \delta(0) + (1 - \omega) \mathcal{P}(\lambda)$$

$$\mathbb{P}(Z = z | \omega, \theta) = \begin{cases} \omega + (1 - \omega) \mathbb{P}(Z = 0 | \theta), & \text{if } z = 0 \\ (1 - \omega) \mathbb{P}(Z \neq 0 | \theta), & \text{if } z > 0 \end{cases}$$

$$\mathbb{E}(Z) = (1 - \omega)\lambda \text{ and } \mathbb{V}(Z) = \left(1 + \frac{\lambda}{\omega}\right)\lambda$$

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

Models for count data with zero-inflation II

ZI models as missing data models

Let $C = (C_1, ..., C_n)$ be a latent random variable so that C_i equals

- $c_i=1$ if $Z_i=0$ and drawn from (0)
- $c_i = 0$ if $Z_i > 0$ or if Z_i is null and drawn from $\mathcal{P}(\lambda)$

Marginal distribution : $C \sim Bernoulli(\omega)$

The new joint distribution is

$$f(Z,C|\omega,\lambda) = \prod_{i=1}^{n} f(z_{i}|C_{i} = c_{i},\omega,\lambda)\pi(C_{i}|\omega)$$
$$= \prod_{i=1}^{n} p^{c_{i}} [(1-\omega)\mathbb{P}(Z_{i} = z_{i}|\lambda)]^{1-c_{i}}$$

Taking explicative variables into account

Mixture proportion (ω) and Poisson intensity (λ) dependent on co-variables (\mathbf{B}, \mathbf{X}) :

The mixture proportion is expressed as a function of B :

$$\operatorname{logit}(\omega_i) = \mathbf{B}_i \beta$$

The Poisson intensity depends on the environment via X :

$$\log(\lambda_i) = \mathbf{X}_i \gamma + \alpha_i$$

- α : spatial random effect allowing for autocorrelation between observations,
- B and X may have columns in common or not

Random spatial effect

Conditional auto-regressive process (CAR) on discret domaine (lattice)

$$\alpha_i | \alpha_j, j \in V_i \sim \mathcal{N}\left(\sum_{j \in V_i} \rho M_{ij} \alpha_j, \sigma^2\right)$$

- V_i neighborhood of individual i
- $E(\alpha) = 0$
- σ^2 : conditional variance
- ullet ρ : spatial correlation
- $M = (M_{ij})$: known weights

$$\theta = (\rho, \sigma^2)$$

Hyper-prior : $\rho \sim U$]a, b[, $\sigma^2 \sim IG$

Variable selection

Let a unknown latent binary variable (to be estimated) indicate which explicative variables are included in the model :

$$\eta = \{\eta_j\}_1^p$$

where p is the total number of explicative variables.

The linear predictors are modified

$$\xi_i = \sum_{j=1}^{p} \mathbf{Y}_{ij} \delta_j \eta_j, \ i = 1, \dots, n,$$

with
$$\xi = (\operatorname{logit}(\omega), \operatorname{log}(\lambda)), \ \mathbf{Y} = (\mathbf{B}, \mathbf{X}), \delta = (\beta, \gamma)$$

Hierarchical Bayesian models I

Three basic levels of hypotheses

1 Data level: conditional distribution of data

$$Z_i|\theta_1,\xi\sim\mathcal{F}(\theta_1,\xi_i)$$

and
$$(Z_i|\theta_1,\xi_i)\perp(Z_j|\theta_1,\xi_j)$$

2 Process Level: distributions of parameters controling data level

$$\xi | \theta_2 \sim \Upsilon(\theta_2)$$

Opening Parameter level: prior distributions of unknown parameters

$$\Theta = (\theta_1, \theta_2) \sim \Phi(\theta_3)$$

with θ_3 set a priori

Hierarchical Bayesian models II

Х

Cyclic graph for spatial ZIP with variable selection : stochastic nodes (circles) or deterministic (squares)

Hierarchical Bayesian models III

Estimation: Bayesian principle

Aim : estimate (posterior) distribution of Θ given data z

- Given prior distribution on Θ : π_0 ,
- Posterior distribution (Bayes' theorem) :

$$\pi(\Theta|z) = \frac{f(z|\Theta)\pi_0(\Theta)}{\int f(z|\Theta)\pi_0(\Theta)d\Theta}$$

• In general, we do not know how to calculate $\pi(\Theta|z)$

 $\operatorname{\underline{Method}}$: Approximate $\pi(\Theta|z)$ using a Monte Carlo Markov Chain algorithm

The ZIP case

Simulate the posterior distribution

In the spatial ZIP case with variable selection :

$$\Theta = (\eta, \beta, \gamma, \mathbf{c}, \alpha, \rho, \sigma)$$

The posterior distribution is :

$$\pi(\eta, \mathbf{c}, \gamma, \beta, \alpha, \rho, \sigma | \mathbf{z}) = f(\mathbf{z} | \eta, \beta, \gamma, \mathbf{c}, \alpha) \pi(\mathbf{c} | \gamma) \pi(\alpha | \rho, \sigma^2)$$
$$\pi(\beta | \eta) \pi(\gamma) \pi(\rho) \pi(\sigma^2) \pi(\eta),$$

where $f(\mathbf{z}|\eta, \beta, \gamma, \mathbf{c}, \alpha) = \ell(\eta, \beta, \gamma, \mathbf{c}, \alpha|\mathbf{z})$ is the likelihood of the parameter set given data.

Monte Carlo Markov Chain Algorithm

 $\underline{\mathsf{Aim}}$: sample values of $\Theta = (\Theta_1, \dots, \Theta_N)$ from an unknown distribution π

- ullet Construct a markov chain whose asymptotic distribution is π
- When distribution π is obtained (convergence), extract samples $\Theta^{(k)} = (\Theta_1^{(k)}, \dots, \Theta_N^{(k)})$ to estimate posterior mode, median, mean...

MCMC algorithm principle

One of mutation/selection algorithms in two steps :

- **1** Propose a new value for parameters (mutation) : $\Theta \longrightarrow \Theta^*$
- Accept or reject mutation (selection)

Different types of algorithm:

- Mutation rule? \leadsto flexible : independent, random walk, gradient-orientated. . .
- Selection rule? → imposed by theory (Metropolis-Hastings, 1970)

Metropolis-Hasting algorithm

Require: Θ^0 , initial point for i=0 to N_{iter} do
Let $\Theta^* \sim Q(\Theta|\Theta^i)$, with Q the proposal distribution (mutation) Accept

$$\Theta^{i+1} = \begin{cases} \Theta^{\star} & \text{with probability } r(\Theta^{i}, \Theta^{\star}) \\ \Theta^{i} & \text{with probability } 1 - r(\Theta^{i}, \Theta^{\star}) \end{cases}$$

where
$$r(\Theta^i, \Theta^\star) = \min(r^\star, 1) = \min\left\{\frac{\pi(\Theta^\star)}{\pi(\Theta^i)} \frac{Q(\Theta^i | \Theta^\star)}{Q(\Theta^\star | \Theta^i)}, 1\right\}$$

end for

Gibbs sampling algorithm

Principle: parameters sequentially updated knowing the full conditional distributions $\pi_i(\Theta_i|\Theta_{-i})$

$$\Theta = \Theta_1, \dots, \Theta_n$$
 with known conditional distributions π_1, \dots, π_n .

In the mutation step, one can simulate

- $\bullet \ \Theta_1^{i+1} \sim \pi_1(\Theta_1^i | \Theta_2^i, \ldots, \Theta_n^i)$
- **3** ...
- $\bullet \Theta_n^{i+1} \sim \pi_n(\Theta_n^i|\Theta_1^{i+1},\ldots,\Theta_{n-1}^{i+1})$

In this case, one can verify $r^\star=1$ \Rightarrow proposals are optimal (following MH \Rightarrow all proposals are accepted

Metropolis within Gibbs sampling

Some of the full conditional conditions may be unknown. In this case, implement a Metropolis step for the corresponding parameters. Overview of the overall algorithm:

Initialization

$$\Theta_0 = (\eta_0, \beta_0, \gamma_0, \mathbf{c}_0, \alpha_0, \rho_0, \sigma_0)$$

- Sequential updates :
 - $\eta_{t+1} \mid \mathbf{z}, \beta_t, \gamma_t, \mathbf{c}_t, \alpha_t$ the latent indicator variable : $\eta_t \rightsquigarrow \eta_{t+1}$,
 - $(\beta_{t+1}, \gamma_{t+1}) \mid \mathbf{z}, \eta_{t+1}, \mathbf{c}_t, \alpha_t$ the regression coefficients : $(\beta_t, \gamma_t) \leadsto (\beta_{t+1}, \gamma_{t+1})$
 - $\mathbf{c}_{t+1} \mid \mathbf{z}, \eta_{t+1}, \beta_{t+1}, \gamma_{t+1}, \alpha_t$ the latent class variable : $\mathbf{c}_t \leadsto \mathbf{c}_{t+1}$
 - $\alpha_{t+1} \mid \mathbf{z}, \eta_{t+1}, \beta_{t+1}, \gamma_{t+1}, \rho_t, \sigma_t$ the spatial random effect : $\alpha_t \leadsto \alpha_{t+1}$
 - $\rho_{t+1} \mid \alpha_{t+1}, \sigma_t$ the spatial parameter mesuring dependency : $\rho_t \leadsto \rho_{t+1}$
 - $\sigma_{t+1} \mid \alpha_{t+1}, \rho_{t+1}$ the conditional variance parameter : $\sigma_t \leadsto \sigma_{t+1}$

Independent Metropolis step : η update for variable selection

- Prior $\eta_i \sim \mathcal{B}(0.5)$
- Proposal
 - randomly chosen $i \in \{1, \dots, n_{var}\}$;
 - $\eta_i^{\star} \sim \mathcal{B}(0.5) \; (\eta^{\star} = 1 \text{ or } 0)$
- Selection

$$r^* = \frac{\ell(z|\alpha, \beta, \eta^*, \gamma)}{\ell(z|\alpha, \beta, \gamma)}$$

is the likelihood ratio

Subalgorithms II Examples

Random Walk Metropolis step : ρ update

Prior

$$\pi_0(\rho) \sim \mathcal{N}(0,1) \mathbb{1}_{[a,b]}$$

Proposal

$$\rho^{\star}|\rho \sim \mathcal{N}(\rho, \sigma_{\rho}^2) \mathbb{1}_{[a,b]}$$

Selection

$$\log(r^*) = \frac{\ell(\rho^*|\alpha, \sigma^2)}{\ell(\rho|\alpha, \sigma^2)} \frac{\mathcal{N}(\rho^*, \sigma_{\rho}^2)}{\mathcal{N}(\rho, \sigma_{\rho}^2)}$$
$$= \frac{\ell(\alpha|\rho^*, \sigma^2)\pi_0(\rho^*)}{\ell(\alpha|\rho, \sigma^2)\pi_0(\rho)} \frac{\mathcal{N}(\rho^*, \sigma_{\rho}^2)}{\mathcal{N}(\rho, \sigma_{\rho}^2)}$$

numerically tractable thanks to CAR properties

Langevin-Metropolis step (gradient-orientated) : α update

- Prior : CAR model
- Proposal $\alpha^* | \alpha \sim \mathcal{N}(\mu_{\alpha}, h\mathbf{I})$, $\mu_{\alpha} = \alpha + \frac{h}{2} \nabla(\alpha)$

$$\nabla(\alpha) = (1 - \mathbf{c})(\mathbf{z} - \lambda) - \hat{\alpha}$$

Selection

$$\log(r^*) = \log\left[\frac{\ell(\alpha^*|\mathbf{z})}{\ell(\alpha|\mathbf{z})}\right] \frac{\pi(\alpha^*|\rho,\sigma)}{\pi(\alpha^*|\rho,\sigma)} \frac{\mathcal{N}(\mu_\alpha,h\mathbf{l})}{\mathcal{N}(\mu_\alpha^*,h\mathbf{l})}$$

Posterior simulation and estimation with R I

Without variable selection

Parameters $\beta = (-1, 0.5),$ $\gamma = (0.8, 1.2),$ $\rho = 0.9, \ \sigma = 1$ Covariables $B \sim \mathcal{N}(0, 0.7I_2)$ $\mathbf{X} \sim \mathcal{N}(0, 0.7 \mathbf{I}_2)$ Data simulation $\mathbf{C} \sim \mathcal{B}(\omega = \mathbf{B}\beta),$ $P \sim \mathcal{P}(\lambda = X\gamma)$ ZP = (1 - C)P

Posterior simulation and estimation with R II

Without variable selection

Summary of MCMC samples (no variable selection)

```
Iiterations: 20000, Burn-in phase: 5000, Thinning number: 100
```

Coefficients in Binomial distribution

```
Mean
            Sd
                  2.5% Median 97.5%
   -1.088 0.294 -1.6698 -1.090 -0.578
B1
B2 0.546 0.238 0.0701 0.509 1.040
```

Coefficients in Poisson distribution

```
Mean
             Sd 2.5% Median 97.5%
   0.714 0.0786 0.556 0.711 0.873
X 1
X2 1.250 0.0761 1.082 1.249 1.401
```

Spatial parameters in CAR model

```
Mean
               Sd 2.5% Median 97.5%
rho
     -0.178  0.800  -1.673  -0.136  0.98
sigma 1.063 0.171 0.795 1.066 1.41
```


Posterior simulation and estimation with R III

Without variable selection

Posterior simulation and estimation with R I

With variable selection

Parameters

$$\beta = (-1, 0.5, 0, 0, 0),$$

 $\gamma = (0.8, 1.2, 0, 0, 0),$

$$\rho = 0.9, \ \sigma = 1$$

Covariables

$$B' = (B, \mathcal{N}(0, 0.7I_3))$$

$$\mathbf{X}' = (\mathbf{X}, mathcalN(0, 0.7\mathbf{I}_2))$$

Data simulation

$$\mathbf{C} \sim \mathcal{B}(\omega = \mathbf{B}\beta),$$

$$\mathbf{P} \sim \mathcal{P}(\lambda = \mathbf{X}\gamma)$$

$$ZP = (1 - C)P$$

Posterior simulation and estimation with R II

With variable selection

Summary of MCMC samples for parameter η in variable selection

```
      Variable selection in Binomial distribution

      Mean
      Sd
      2.5%
      Median
      97.5%

      B1
      0.947
      0.225
      0
      1
      1

      B2
      0.680
      0.468
      0
      1
      1

      B3
      0.533
      0.501
      0
      1
      1

      B4
      0.573
      0.496
      0
      1
      1

      B5
      0.467
      0.501
      0
      0
      1
```

Variable selection in Poisson distribution

	Mean	Sd	2.5%	Median	97.5%	
X1	1.000	0.000	1	1	1	
X2	1.000	0.000	1	1	1	
ХЗ	0.313	0.465	0	0	1	
X4	0.640	0.482	0	1	1	
Х5	0.400	0.492	0	0	1	

Conclusions

- Hierarchical Bayseian: flexible framework for modelling,
- Mutation/selection algorithms are robust and tunable,
- Computing realized in C language can be easily interfaced with R,
- All routines and more will be included in a free R package