

Open Reproducible Research in Empirical Science

Olivier Flores

UMR PVBMT, Université de La Réunion / CIRAD

Principles	Local Workflow	Data	Software integration	Document production

2 Local Workflow

3 Data

4 Software integration

5 Document production

Data

Software integration

Interests and motivation. I Wishful thinking or reality ?

Reproducibility

One of the main principles of the scientific method, refers to the ability of a test or experiment to be accurately reproduced, or replicated, by someone else working independently.

(Wikipedia)

Notion present in Discours de la Méthode (Descartes, 1637)

Principles Local Workflow Software integration Document production Interests and motivation. II Wishful thinking or reality ?

- "Generating verifiable knowledge has long been scientific discovery's central **goal**, yet today it's impossible to verify most of the [computational] results that scientists present at conferences and in papers."
- About scientific articles: "There is a leap of faith required by the reader; they must believe that the transformations and model fitting were done appropriately and without error"

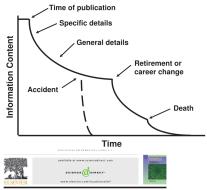
By the Yale Law School Roundtable on Data and Code Sharing

Roundtable participants identified ways of making computational research details readily available. which is a crucial step in addressing the current credibility crisis.

Bioconductor Project

Bioconductor Project Working Papers

Year 2004


Paper 2

Statistical Analyses and Reproducible Research

Robert Gentleman* Duncan Temple Lang[†]

Principles	Local Workflow	Data	Software integration	Document production
Interests Wishful thinking	and motivati	on. III		

- Essential in principle, difficult in general,
- Energy- and time-saving on a daily basis: to share and communicate with collaborators, colleagues, students,...

Meta-information concepts for ecological data management

William K. Michener University of New Mexics. Department of Bolooy. Advancement. NM 87133-0001. United States

Local Workflow

Data

Software integration

Document production

Interests and motivation. IV Wishful thinking or reality ?

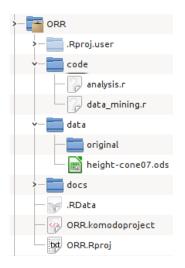
Objective

Propose a simple workflow based on open tools to easily share research results, if not with the World, at least within a collaborative group.

Principles	nles	ICI	rin	Р

Data

The basis: a distributable and executable unit Components


- Compendium: a special form of knowledge that "combines **text**, **data** and auxiliary software (**code**) into a *distributable* and *executable* unit"
- Dynamic documents:
 - the three unitary elements that can be "extracted and processed in various different ways by both the author and the reader"
 - Sequence of text chunks and code chunks
 - Text chunks: description for reading purpose
 - **Code** chunks: sequence of commands to be interpreted by general purpose software
 - General purpose software (R, Perl, ...) and auxiliary software (user's code)
 - Relations between chunks, not necessarily linear

Principles	Local Workflow	Data	Software integration	Document production
The box Folder structure	e contents			

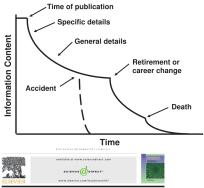
Box = Working folder

- Three primary subfolders: code, data, text
- Simple names
- Avoid multiple versions (versioning system)
- A simple (but helpful) basis one can easily develop !

Principles	Local Workflow	Data	Software integration	Document production
Ineracting A dynamic view	g elements			

- Data first!
- All elements interact
- Interface between software and languages (Python, Perl, C,...)

Local Workflow


Data

Software integration

Document production

Handling, Analysis and Mining I Format and import

- Keep copy of the original
- Working version ready for import
- Rectangular and simple
- Keep track (metadata)

Meta-information concepts for ecological data management

William K. Michener University of New Mexico, Department of Biology, Albuquerque, NM 87133-0001, United States

Local Workflow

Data

Software integration

Document production

Handling, Analysis and Mining II Format and import

library(ROpenOffice)
tmp<-read.ods('../data/height-cone07.ods')</pre>

- Import working version **ROpenOffice**
- Transorm data

cla	ss(tmp))		
[1]	"list'	1		
len	i <mark>gth</mark> (tmj	p)		
[1]	6			
hea	ld(tmp\$]	Llaureol	Lum)	
S	pecies	height	cones	
1	Ll	150	96	
2	Ll	190	270	
3	Ll	120	20	
4	Ll	80	13	
5	Ll	120	11	
6	Ll	100	10	

Local Workflow

Data

Software integration

Data transformation and visualizaion

```
dat<-do.call('rbind',tmp)
summary(dat)</pre>
```

##	species	height	cones
##	L1:64	Min. : 20	Min. : 1.0
##	S :36	1st Qu.: 80	1st Qu.: 15.0
##	X :45	Median :120	Median : 32.5
##	R :47	Mean :119	Mean : 66.3
##	Lp:52	3rd Qu.:150	3rd Qu.: 73.8
##	C :34	Max. :400	Max. :1000.0

- Functions **melt** and **cast**: easy conversion between long and wide formats
- Data transformation: reshape, plyr,
- Data mining

tab

	species	V1
1	Ll	34.704
2	S	206.706
3	X	147.961
4	R	81.245
5	Lp	41.191
6	C	3.548

Principles	Local Workflow	Data	Software integration	Document production
Gramma	of graphics			

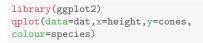
• Mapping graphical elements on variables

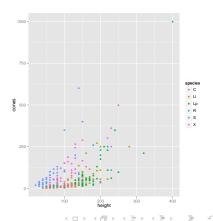
 \neq setting elements by user (shape, size, colour,...)

- Multiple layer plots
- Flexible control on layers

The usual way

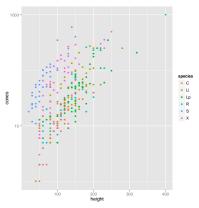
```
plot(x=cones,y=height,data=data,
pch=as.numeric(factor(dat[,'species'])))
```


Principles	Local Workflow	Data	Software integration	Document production
Grammar	of graphics			


Grammar of graphics

- Mapping graphical elements on variables
 ≠ setting elements by user
 - (shape, size, colour,...)
- Multiple layer plots
- Flexible control on layers

A simple example

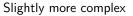

Principles	Local Workflow	Data	Software integration	Document production
Grammar	of graphics			

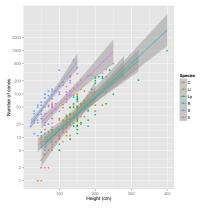
• Mapping graphical elements on variables

 \neq setting elements by user (shape, size, colour,...)

- Multiple layer plots
- Flexible control on layers

Change y-scale to logarithmic:

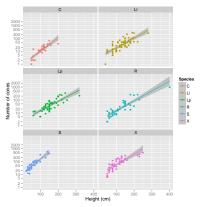

Principles	Local Workflow	Data	Software integration	Document production
Grammar	of graphics			


• Mapping graphical elements on variables

 \neq setting elements by user (shape, size, colour,...)

- Multiple layer plots
- Flexible control on layers

```
\begin{array}{l} p < - \mbox{ggplot(data = dat, aes(x = height, y = cones, colour = species)) + \\ geom_point() + \\ geom_smooth(method ='lm', aes(group = species), alpha = 0.5) + \\ scale_y_log10(breaks = \\ c(1,2,5,10,20,50,100,200,500,1000,2000)) + \\ labs(x = 'Height (cm)', y = 'Number of cones', colour = 'Species') \end{array}
```

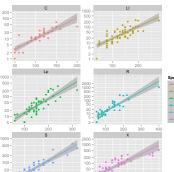


Principles	Local Workflow	Data	Software integration	Document production
Grammar	of graphics			

 Mapping graphical elements on variables

 \neq setting elements by user (shape, size, colour,...)

- Multiple layer plots
- Flexible control on layers
- $p + facet_wrap(\sim species, ncol=2)$

Complex settings made easy



Principles	Local Workflow	Data	Software integration	Document production
Grammar	of graphics			

umber of con

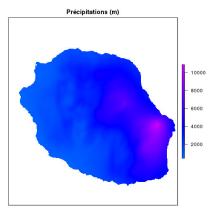
- Mapping graphical elements on variables
 - \neq setting elements by user (shape, size, colour,...)
- Multiple layer plots
- Flexible control on layers

 ${\sf p} + {\sf facet_wrap}({\sim}{\sf species},{\sf ncol} = 2,{\sf scales} = {\sf 'free'})$

Height (cm)

Free scales

150 200


100

Principles	Local Workflow	Data	Software integration	Document production
Integra				

- Open tools
- Example in Geographic Information Systems (GIS)
- QGIS, GRASS, SAGA for analysis
- GDAL for format exchange and import
- Interface packages with R: rgdal, RSAGA, rGrass,
- Tools: maptools, raster, rgeos, sp, spatial,

Principles	Local Workflow	Data	Software integration	Document production
Integrat Example in G				

Data

Production Literate programing

The key to reproducibility !!

- Literate programming
- "Instead of imagining that our task is to instruct a computer what to do, let us concentrate on explaining to human beings what we want a computer to do." (D. Knuth, 1984)
- Ordered mixture of **text** and **code** chunks
- Code chunks: produce figures and tables based on data
- Text chunks: explains the methods and results

Donald E. Knuth

Principles	Local Workflow	Data	Software integration	Document production
Productic Handling dynami				

- Weaving: process dynamics documents to produce human-readable versions in various formats (PDF, HTML, ODF,...)
- Tangling: extract code chunks from dynamic document,
- Multiple alternatives

	(La)TeX, Markdown, ODF
Weaver/Tangler	Sweave, knitr, pander, rmarddown
Software	R, Perl, Python, C
Format	PDF, HTML, ODF

Principles	Local Workflow	Data	Software integration	Document production
The Tex	approach			

- Benefits from the power of TeX to produce complex documents
- Rather steep learning curve...

Text without code, may contain inline commands,			
to get the value of \$\pi\$ for instance: \Sexpr{pi}\\			
Code chunk producing a plot :			
< <label,eval=f,dev='png',size='scriptsize'>>=</label,eval=f,dev='png',size='scriptsize'>			
<pre>set.seed(1213) # for reproducibility</pre>			
x <- cumsum(rnorm(100))			
mean(x) # mean of x			
<pre>plot(x, type = 'l') # Brownian motion</pre>			

Text without code, may contain inline commands, to get the value of π for instance: 3.1416 Code chunk producing a plot :

```
set.seed(1213) # for reproducibility
x <- cumsum(rnorm(100))
mean(x) # mean of x
plot(x, type = 'l') # Brownian motion
```

Principles	Local Workflow	Data	Software integration	Document production
The meril		ab		

i ne markdown approach

- Simple mark-up language,
- Multiple output formats (PDF, HTML)
- Simple language for simple document (for now),

library(pander) pander(tab)

species	V1
Ll	34.7
S	206.7
X	148
R	81.25
Lp	41.19
С	3.548

Local Workflow

Data

Software integration

Document production

Thank you for your attention!

Questions, remarks ?

